If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-29=0
a = 49; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·49·(-29)
Δ = 5684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5684}=\sqrt{196*29}=\sqrt{196}*\sqrt{29}=14\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{29}}{2*49}=\frac{0-14\sqrt{29}}{98} =-\frac{14\sqrt{29}}{98} =-\frac{\sqrt{29}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{29}}{2*49}=\frac{0+14\sqrt{29}}{98} =\frac{14\sqrt{29}}{98} =\frac{\sqrt{29}}{7} $
| -124+x=23 | | |9v-3|=-8 | | 8=1.5t+2 | | -6x+26=4x-4 | | D=1.5t+2 | | 2x+1=295 | | F(x)=(x-20)3 | | x/5-1.5=4.1 | | 27=9–3x | | 4m/5+6=22 | | 10x^2+2x-60=0 | | -7g=10−9g | | 9=(1/5)z+12 | | -9b=-10b−6 | | x(1–2x)(3+5x)=0 | | -9+5r=4r | | 7^4x=49^3x-4 | | x2+12x+47=0 | | 5x=28-5 | | 2.8y+60.2y=5y–14 | | (3/2)^-x=8/27 | | .03m=15 | | 4+t+t=13 | | 5=13-y | | 11-(8x/4)+21=54 | | 20-3m=2m-8 | | x-5=-16,x=-11 | | w/14=2/4 | | -40+x=-46 | | 12x^2+1080x-21600=0 | | 12.6m=37.8 | | (3x)^2+(4x)^2+(5x)^2=1250 |